PRODUCT DATASHEET

ALUMINUM NITRIDE SUBSTRATE
AIN-60 • M - PLANE • SEMI-TRANSPARENT
Next generation devices demand advances in semiconductor materials.

UV-C LEDs and laser diodes, as well as high performance power and RF devices are all made using AlGaN epitaxial layers, often with Al concentrations above 60%. The key to manufacturing these high performance devices is the ability to produce high quality AlN substrates on which these epitaxial layers are laid down.

By building devices directly on HexaTech’s native AlN substrates, device layer defects can be reduced 10,000 to 1,000,000 times when compared to the next best technologies. Utilizing HexaTech’s high quality substrates translates to devices with optimum performance, reliability and production yields.

Standard Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>Up to 15.0 mm</td>
</tr>
<tr>
<td>Shape</td>
<td>Round (Rectangular Optional)</td>
</tr>
<tr>
<td>Thickness</td>
<td>550.0 μm ± 50.0 μm</td>
</tr>
<tr>
<td>Orientation</td>
<td>{10-10} ± 1.0°</td>
</tr>
</tbody>
</table>
| Optical Absorbance @265nm | Alpha typical ~300 cm\(^{-1}\)
\alpha \text{ maximum} <500 cm\(^{-1}\) |
| Surface Finish | Front face: CMP
Back face: Mechanical |
| High resolution XRD Rocking Curve, \(10-10\) Reflection | < 100 arcsec FWHM |
| Usable Area | > 90% |
| Edge Exclusion | 1.0 mm |
| Flat Orientation | \{0001\} |
| Laser Marking | Backside, parallel to flat |
| Packaging | Single wafer cups |
Aluminum Nitride M-Plane and C-Plane Substrate
Selected Characterization Examples

Surface Shape
Polished c-plane substrate with full wafer variation of ± 4 microns.

Surface Roughness
AFM image (2 x 2 μm²) of a CMP polished m-plane substrate with RMS surface roughness of ~0.1 nm.

High Resolution X-Ray (Philips X’Pert Pro MRD)

XRC Map
Full-wafer XRC map at 2 mm step size with FWHM of (00.2) and (10.2) reflections at 11° and 12°, respectively.

XRT Reflection Composite
Composite of X-ray topograph images showing no extended structural defects.

White Beam X-Ray Topography (National Synchrotron Light Source)

Dislocation Density
Transmission X-ray topograph of m-plane substrate exhibiting low dislocation density (< 10³/cm²).

Cross Polarization
Crossed polarizer image of m-plane substrate exhibiting uniform extinction.
ABOUT HEXATECH

HexaTech Inc. has developed a proprietary crystal growth process that yields single crystalline aluminum nitride (AlN) boules ideally suited for the fabrication of high-quality AlN substrates. High-performance, high Al concentration AlGaN semiconductor devices currently face a crucial challenge in terms of achievable device quality. Fabricating these devices on lattice-matched, highly thermally conducting, single crystalline AlN wafers enables sophisticated, next-generation AlGaN-based devices with vastly superior performance and device lifetimes.

For more company or product information, please visit us at www.hexatechinc.com or contact sales@hexatechinc.com.